
django-modern-rpc
Release 1.0.3

Antoine Lorence

May 15, 2024

CONTENTS

1 Getting started 3
1.1 Quickstart . 3
1.2 Procedures registration . 5
1.3 Entrypoints configuration . 7
1.4 Error handling . 10
1.5 Settings . 11
1.6 Implementation details . 13
1.7 Authentication . 17
1.8 Procedures documentation . 20
1.9 Security concerns . 22
1.10 Changelog . 22
1.11 Get involved . 33
1.12 Setup environment . 34

Index 37

i

ii

django-modern-rpc, Release 1.0.3

RPC (Remote Procedure Call) is a pretty old network protocol used to call functions on another system or web server
through HTTP POST requests. It has been created decades ago and is one of the predecessor of modern Web API
protocols (REST, GraphQL, etc.).

While it is a bit outdated now, there is still use-cases were XML-RPC or JSON-RPC server must be implemented.
Django-modern-rpc will help you setup such a server as part of your Django project.

CONTENTS 1

https://github.com/alorence/django-modern-rpc/issues
https://pypi.org/project/django-modern-rpc/
https://github.com/alorence/django-modern-rpc/releases

django-modern-rpc, Release 1.0.3

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Important: django-modern-rpc requires python 3.7+ and Django 2.1+. If you need to install it in environment with
older Python/Django versions, you must install a previous release. See Changelog for more information.

Installing the library and configuring a Django project to use it can be achieved in a few minutes. Follow Quickstart
for very basic setup process. Later, when you will need to configure more precisely your project, follow other topics in
the menu.

1.1 Quickstart

1.1.1 Installation

Install django-modern-rpc in your environment, using pip or equivalent tool

pip install django-modern-rpc

Add modernrpc app to settings.INSTALLED_APPS:

Listing 1: myproject/settings.py

INSTALLED_APPS = [
...
'modernrpc',

]

1.1.2 Declare a procedure

Remote procedures are global Python functions decorated with @rpc_method.

Listing 2: myapp/remote_procedures.py

from modernrpc.core import rpc_method

@rpc_method
def add(a, b):

return a + b

3

django-modern-rpc, Release 1.0.3

@rpc_method behavior can be customized to your needs. Read Procedures registration for a full list of available
options.

1.1.3 Locate procedures modules

Django-modern-rpc will automatically register functions decorated with @rpc_method, but needs a hint to locate them.
Set settings.MODERNRPC_METHODS_MODULES variable to indicate project’s modules where remote procedures are
declared.

Listing 3: myproject/settings.py

MODERNRPC_METHODS_MODULES = [
'myapp.remote_procedures'

]

1.1.4 Create an entry point

The entrypoint is a special Django view handling RPC calls. Like any other view, it must be declared in URLConf or
any app specific urls.py:

Listing 4: myproject/urls.py

from django.urls import path
from modernrpc.views import RPCEntryPoint

urlpatterns = [
... other url patterns
path('rpc/', RPCEntryPoint.as_view()),

]

Entry points behavior can be customized to your needs. Read Entrypoints configuration for full documentation.

1.1.5 Test the server

Start your project using python manage.py runserver and call your procedure using JSON-RPC or XML-RPC
client, or directly with your favourite HTTP client

Listing 5: JSON-RPC example

~ $ curl -X POST localhost:8000/rpc -H "Content-Type: application/json" -d '{"id": 1,
→˓"method": "system.listMethods", "jsonrpc": "2.0"}'
{"id": 1, "jsonrpc": "2.0", "result": ["add", "system.listMethods", "system.methodHelp",
→˓ "system.methodSignature"]}

~ $ curl -X POST localhost:8000/rpc -H "Content-Type: application/json" -d '{"id": 2,
→˓"method": "add", "params": [5, 9], "jsonrpc": "2.0"}'
{"id": 2, "jsonrpc": "2.0", "result": 14}

4 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

Listing 6: XML-RPC example

from xmlrpc.client import ServerProxy

with ServerProxy("http://localhost:8000/rpc") as proxy:
proxy.system.listMethods()
proxy.add(5, 9)

['add', 'system.listMethods', 'system.methodHelp', 'system.methodSignature', 'system.
→˓multicall']
14

1.2 Procedures registration

1.2.1 Introduction

Any global python function can be exposed. Simply decorate it with modernrpc.core.rpc_method:

Listing 7: myproject/myapp/remote_procedures.py

from modernrpc.core import rpc_method

@rpc_method
def add(a, b):

return a + b

Django-modern-rpc will automatically register procedures at startup, as long as the containing module is listed in
settings.MODERNRPC_METHODS_MODULES:

Listing 8: settings.py

MODERNRPC_METHODS_MODULES = [
"myapp.remote_procedures",

]

Note: Automatic registration is performed in modernrpc.apps.ModernRpcConfig.ready(). See Django docs for
additional information.

1.2.2 Customize registration

Without any argument, @rpc_method decorator will register the procedure with default parameters. It will be avail-
able for all entry points, any protocol (XML-RPC or JSON-RPC) and will have the function name as procedure’s
“methodName”.

You can also change this behavior by adding arguments:

1.2. Procedures registration 5

https://docs.djangoproject.com/en/dev/ref/applications/#django.apps.AppConfig.ready

django-modern-rpc, Release 1.0.3

Procedure name

Use name to override the exposed procedure’s “methodName”. This is useful to setup a dotted name, which is not
allowed in python.

Default: name = None

@rpc_method(name='math.add')
def add(a, b):

return a + b

Protocol availability

When a procedure must be exposed only to a specific protocol, set protocol argument to Protocol.JSON_RPC or
Protocol.XML_RPC.

Default: protocol = Protocol.ALL

from modernrpc.core import rpc_method, Protocol

@rpc_method(protocol=Protocol.JSON_RPC)
def add(a, b):

return a + b

Note: Don’t forget to import modernrpc.core.Protocol enum.

Entry point

If you declared multiple entry points (see Declare multiple entry points) and want a procedure to be exposed only from
one of them, provide its name using entry_point argument. You can also expose a procedure to 2 or more entry
points by setting a list of strings.

Default: entry_point = modernrpc.core.ALL

This will expose the procedure to "apiV2" entry point only"
@rpc_method(entry_point="apiV2")
def add(a, b):

return a + b

This will expose the procedure to 2 different entry points
@rpc_method(entry_point=["apiV2", "legacy"])
def multiply(a, b):

return a * b

6 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

1.2.3 Access internal information

If you need to access some environment from your RPC method, simply adds **kwargs in function parameters. When
the function will be executed, a dict will be passed as argument, providing the following information:

• Current HTTP request (HttpRequest instance)

• Current protocol (JSON-RPC or XML-RPC)

• Current entry point name

• Current handler instance

See the example to see how to access these values:

from modernrpc.core import rpc_method, REQUEST_KEY, ENTRY_POINT_KEY, PROTOCOL_KEY,␣
→˓HANDLER_KEY

@rpc_method
def content_type_printer(**kwargs):

Get the current request
request = kwargs.get(REQUEST_KEY)

Other available objects are:
protocol = kwargs.get(PROTOCOL_KEY)
entry_point = kwargs.get(ENTRY_POINT_KEY)
handler = kwargs.get(HANDLER_KEY)

Return the Content-Type of the current request
return request.content_type

1.3 Entrypoints configuration

Django-modern-rpc provides a class-based view modernrpc.views.RPCEntryPoint to handle remote procedure
calls.

1.3.1 Usage

RPCEntryPoint is a standard Django view, you can declare it in your project or app’s urls.py:

Listing 9: urls.py

from django.urls import path
from modernrpc.views import RPCEntryPoint

urlpatterns = [
... other views
path('rpc/', RPCEntryPoint.as_view()),

]

Then, all requests to http://yourwebsite/rpc/ will be routed to the view. They will be inspected and parsed to be
interpreted as RPC call. The result of procedure call will be encapsulated into a response according to the request’s
protocol (JSON-RPC or XML-RPC).

1.3. Entrypoints configuration 7

django-modern-rpc, Release 1.0.3

1.3.2 Advanced configuration

You can modify the behavior of the entry point by passing arguments to as_view().

Restrict supported protocol

Using protocol parameter, you can make sure a given entry point will handle only JSON-RPC or XML-RPC requests.
This can be used to setup protocol-specific paths.

Default: protocol = Protocol.ALL

Listing 10: urls.py

from django.urls import path

from modernrpc.core import Protocol
from modernrpc.views import RPCEntryPoint

urlpatterns = [
path('json-rpc/', RPCEntryPoint.as_view(protocol=Protocol.JSON_RPC)),
path('xml-rpc/', RPCEntryPoint.as_view(protocol=Protocol.XML_RPC)),

]

Declare multiple entry points

Using entry_point parameter, you can declare different entry points. Later, you will be able to configure your RPC
methods to be available to one or more specific entry points (see Procedure registration - entry point)

Default: entry_point = ALL

Listing 11: urls.py

from django.urls import path

from modernrpc.views import RPCEntryPoint

urlpatterns = [
path('rpc/', RPCEntryPoint.as_view(entry_point='apiV1')),
path('rpcV2/', RPCEntryPoint.as_view(entry_point='apiV2')),

]

HTML documentation

RPCEntryPoint view can be configured to display HTML documentation of your procedures when it receive a GET
request. To enable the feature, simply set enable_doc = True in your view instance.

Default: enable_doc = False

Listing 12: urls.py

from django.urls import path

from modernrpc.views import RPCEntryPoint
(continues on next page)

8 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

(continued from previous page)

urlpatterns = [
...
path('rpc/', RPCEntryPoint.as_view(enable_doc=True)),

]

The view will return HTML documentation on GET requests and process remote procedure calls on POST requests.

If you want a documentation-only entry point, set enable_rpc = False on documentation entry point.

Default: enable_rpc = True

Listing 13: urls.py

urlpatterns = [
By default, RPCEntryPoint does NOT provide documentation but handle RPC requests
path('rpc/', RPCEntryPoint.as_view()),

And you can configure it to display doc without handling RPC requests.
path('rpc-doc/', RPCEntryPoint.as_view(enable_doc=True, enable_rpc=False)),

]

The complete documentation is available here Procedures documentation

1.3.3 Reference

class modernrpc.views.RPCEntryPoint(**kwargs)
This is the main entry point class. It inherits standard Django View class.

get_context_data(**kwargs)
Update context data with list of RPC methods of the current entry point. Will be used to display methods
documentation page

handler_classes

Return the list of handlers to use when receiving RPC requests.

post(request, *args, **kwargs)
Handle an XML-RPC or JSON-RPC request.

Parameters
• request – Incoming request

• args – Unused

• kwargs – Unused

Returns
A HttpResponse containing XML-RPC or JSON-RPC response with the result of procedure
call

1.3. Entrypoints configuration 9

django-modern-rpc, Release 1.0.3

1.4 Error handling

1.4.1 Introduction

When remote procedures are executed, errors can be caused by almost anything: invalid request payload, arguments
deserialization or result serialization error, exception in method execution, etc. All errors must be handled properly for
2 reasons :

1. An error response must be returned to RPC client (with an error code and a textual message)

2. Developers should be able to detect such errors (using logs, error reporting tool like Sentry, etc.)

For that reasons, django-modern-rpc handle all errors with Python builtin exception system. This allows for very
flexible error handling and allows to define custom exceptions with fixed error code and message.

1.4.2 Builtin exceptions

Hopefully, error codes for both JSON-RPC and XML-RPC are pretty similar. The following errors are fully supported
in django-modern-rpc.

Code Message
-32700 parse error. not well formed
-32600 Invalid request
-32601 Method not found
-32602 Invalid params
-32603 Internal error

Additional errors from XML-RPC specs are less relevant in modern web application, and have not been implemented.

1.4.3 Custom exceptions

When any exception is raised from a remote procedure, the client will get a default Internal Error as response. If you
want to return a custom error code and message instead, simply define a custom exception. Create an RPCException
sub-classes and set a faultCode to RPC_CUSTOM_ERROR_BASE + N with N a unique number.

Here is an example:

class MyException1(RPCException):
def __init__(self, message):

super().__init__(RPC_CUSTOM_ERROR_BASE + 1, message)

class MyException2(RPCException):
def __init__(self, message):

super().__init__(RPC_CUSTOM_ERROR_BASE + 2, message)

Such exceptions raised from your remote procedure will be properly returned to client.

10 Chapter 1. Getting started

https://www.jsonrpc.org/specification#error_object
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

django-modern-rpc, Release 1.0.3

1.4.4 Log errors

New in version 1.0.

By default, when an exception is caught from modernrpc code, a stacktrace of the error will be printed in the default
log output. This allows developer to detect such case and fix the issue if needed.

To disable this behavior, set MODERNRPC_LOG_EXCEPTIONS to False.

1.5 Settings

Django-modern-rpc behavior can be customized by defining some values in project’s settings.py.

1.5.1 Basic settings

MODERNRPC_METHODS_MODULES

Required
Yes

Default
[] (Empty list)

Define the list of python modules containing RPC methods. You must set this list with at least one module. At startup,
the list is looked up to register all python functions decorated with @rpc_method.

MODERNRPC_LOG_EXCEPTIONS

Required
No

Default
True

Set to False if you want to disable logging on exception catching

MODERNRPC_DOC_FORMAT

Required
No

Default
"" (Empty string)

Configure the format of the docstring used to document your RPC methods.

Possible values are: "", rst or markdown.

Note: The corresponding package is not automatically installed. You have to ensure library markdown or docutils is
installed in your environment if set to a non-empty value

1.5. Settings 11

django-modern-rpc, Release 1.0.3

MODERNRPC_HANDLERS

Required
No

Default
['modernrpc.handlers.JSONRPCHandler', 'modernrpc.handlers.XMLRPCHandler']

List of handler classes used by default in any RPCEntryPoint instance. If you defined your custom handler for any
protocol, you can replace the default class used

MODERNRPC_DEFAULT_ENTRYPOINT_NAME

Required
No

Default
"__default_entry_point__"

Default name used for anonymous RPCEntryPoint

1.5.2 Protocol specific

You can configure how JSON-RPC handler will serialize and unserialize data:

MODERNRPC_JSON_DECODER

Required
No

Default
"json.decoder.JSONDecoder"

Decoder class used to convert JSON data to python values.

MODERNRPC_JSON_ENCODER

Required
No

Default
"django.core.serializers.json.DjangoJSONEncoder"

Encoder class used to convert python values to JSON data. Internally, modernrpc uses the default Django JSON
encoder, which improves the builtin python encoder by adding support for additional types (DateTime, UUID, etc.).

12 Chapter 1. Getting started

https://docs.djangoproject.com/en/dev/topics/serialization/#djangojsonencoder
https://docs.djangoproject.com/en/dev/topics/serialization/#djangojsonencoder

django-modern-rpc, Release 1.0.3

MODERNRPC_XMLRPC_USE_BUILTIN_TYPES

Required
No

Default
True

Control how builtin types are handled by XML-RPC serializer and deserializer. If set to True (default), dates will be
converted to datetime.datetime by XML-RPC deserializer. If set to False, dates will be converted to XML-RPC
DateTime instances (or equivalent for Python 2).

This setting will be passed directly to ServerProxy instantiation.

MODERNRPC_XMLRPC_ALLOW_NONE

Required
No

Default
True

Control how XML-RPC serializer will handle None values. If set to True (default), None values will be converted to
<nil>. If set to False, the serializer will raise a TypeError when encountering a None value.

MODERNRPC_XMLRPC_DEFAULT_ENCODING

Required
No

Default
None

Configure the default encoding used by XML-RPC serializer.

MODERNRPC_XML_USE_BUILTIN_TYPES

Deprecated. Define MODERNRPC_XMLRPC_USE_BUILTIN_TYPES instead.

1.6 Implementation details

1.6.1 XML-RPC

The most recent XML-RPC specification page used as reference for django-modern-rpc development is http://xmlrpc.
com/spec.md. It is part of xmlrpc.com, a website created by Dave Winer in 2019 to propose updated tools around
XML-RPC standard.

The original website (xmlrpc.scripting.com) has also been archived with a new URL: 1998.xmlrpc.com

1.6. Implementation details 13

https://docs.python.org/3/library/xmlrpc.client.html#datetime-objects
https://docs.python.org/3/library/xmlrpc.client.html#datetime-objects
https://docs.python.org/2/library/xmlrpclib.html#datetime-objects
https://docs.python.org/3/library/xmlrpc.client.html#xmlrpc.client.ServerProxy
http://xmlrpc.com/spec.md
http://xmlrpc.com/spec.md
http://xmlrpc.com
https://github.com/scripting
http://1998.xmlrpc.com

django-modern-rpc, Release 1.0.3

System introspection methods

System introspection methods (listMethods, methodHelp, methodSignature) were not part of the original standard but
were proposed in an unofficial addendum. Here is a list of references pages:

• http://xmlrpc-c.sourceforge.net/introspection.html

• http://scripts.incutio.com/xmlrpc/introspection.html (dead)

• http://xmlrpc.usefulinc.com/doc/reserved.html) (dead)

Multicall

Multicall was first proposed by Eric Kidd on 2001-01. Since the original article is now gone from the internet, it has
been archived at https://mirrors.talideon.com/articles/multicall.html

Other useful links

• Eric Kidd’s XML-RPC How To: https://tldp.org/HOWTO/XML-RPC-HOWTO/index.html

1.6.2 JSON-RPC

Since JSON-RPC specification is more recent, available documentation is easier to find. The main specification is
available at https://www.jsonrpc.org/specification

The current official standard for JSON format is RFC 8259.

1.6.3 Types support

Most of the time, django-modern-rpc will serialize and unserialize

RPC Data type XML-RPC JSON-RPC Python conversion
null ✓ (1) ✓ None
string ✓ ✓ str
int ✓ ✓ int
float ✓ ✓ float
boolean ✓ ✓ bool
array ✓ ✓ list
struct ✓ ✓ dict
date ✓ (2) See (2)
bas64 ✓ (3) N/A See (3)

(1) null and NoneType
By default, both JSON-RPC and XML-RPC handlers can serialize None and deserialize null value. The XML handler
will convert such values to <nil/> special argument, JSON one will convert to JSON null.

But some old XML-RPC clients may misunderstand the <nil/> value. If needed, you can disable its support by set-
ting MODERNRPC_XMLRPC_ALLOW_NONE to False. The XML-RPC marshaller will raise an exception on None
serialization or <nil/> deserialization.

(2) Date types

14 Chapter 1. Getting started

http://xmlrpc-c.sourceforge.net/introspection.html
http://scripts.incutio.com/xmlrpc/introspection.html
http://xmlrpc.usefulinc.com/doc/reserved.html
https://mirrors.talideon.com/articles/multicall.html
https://tldp.org/HOWTO/XML-RPC-HOWTO/index.html
https://www.jsonrpc.org/specification
https://datatracker.ietf.org/doc/html/rfc8259

django-modern-rpc, Release 1.0.3

JSON transport has no specific support of dates, they are transmitted as string formatted with ISO 8601 standard. The
behavior of default encoder and decoder classes is:

• Input date (RPC method argument)

– Dates are transmitted as standard string. Decoder will NOT try to recognize dates to apply specific treatment

• Output date (RPC method return type)

– datetime.datetime objects will be automatically converted to string (format ISO 8601), so JSON-RPC
clients will be able to handle it as usual. This behavior is due to the use of DjangoJSONEncoder as default
encoder.

If you need to customize behavior of JSON encoder and/or decoder, you can specify another classes in settings.py:

MODERNRPC_JSON_DECODER = 'json.decoder.JSONDecoder'
MODERNRPC_JSON_ENCODER = 'django.core.serializers.json.DjangoJSONEncoder'

XML-RPC transport defines a type to handle dates and date/times: dateTime.iso8601. Conversion is done as follow:

• Input date (RPC method argument)

– If settings.MODERNRPC_XMLRPC_USE_BUILTIN_TYPES = True (default), the date will be con-
verted to datetime.datetime

– If settings.MODERNRPC_XMLRPC_USE_BUILTIN_TYPES = False, the date will be converted to
xmlrpc.client.DateTime (Python 3) or xmlrpclib.DateTime (Python 2)

• Output date (RPC method return type)

– Any object of type datetime.datetime, xmlrpclib.DateTime or xmlrpc.client.DateTime will be
converted to dateTime.iso8601 in XML response

To simplify dates handling in your procedures, you can use get_builtin_date() helper to convert any input into a buildin
datetime.datetime.

modernrpc.helpers.get_builtin_date(date: Union[str, datetime, DateTime], date_format: str =
'%Y-%m-%dT%H:%M:%S', raise_exception: bool = False)→
Optional[datetime]

Try to convert a date to a builtin instance of datetime.datetime. The input date can be a str, a datetime.
datetime, a xmlrpc.client.Datetime or a xmlrpclib.Datetime instance. The returned object is a
datetime.datetime.

Parameters
• date – The date object to convert.

• date_format – If the given date is a str, format is passed to strptime to parse it

• raise_exception – If set to True, an exception will be raised if the input string cannot be
parsed

Returns
A valid datetime.datetime instance

base64
base64 is not specifically supported, but you should be able to serialize and unserialize base64 encoded data as string.

1.6. Implementation details 15

django-modern-rpc, Release 1.0.3

1.6.4 Logging

Internally, django-modern-rpc use Python logging system. While messages are usually hidden by default Django log-
ging configuration, you can easily show them if needed.

You only have to configure settings.LOGGING to handle log messages from modernrpc module. Here is a basic
example of such a configuration:

Listing 14: settings.py

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {

Your formatters configuration...
},
'handlers': {

'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',

},
},
'loggers': {

your other loggers configuration
'modernrpc': {

'handlers': ['console'],
'level': 'DEBUG',
'propagate': True,

},
}

}

All information about logging configuration can be found in official Django docs.

Note: Logging configuration is optional. If not configured, the errors will still be visible in logs unless you set
MODERNRPC_LOG_EXCEPTIONS to False. See Logging errors

1.6.5 System methods

XML-RPC specification doesn’t provide default methods to achieve introspection tasks, but some people proposed a
standard for such methods. The original document is now offline, but has been retrieved from Google cache and is now
hosted here.

16 Chapter 1. Getting started

https://docs.djangoproject.com/en/dev/topics/logging/#configuring-logging
http://xmlrpc.scripting.com/spec.html
http://xmlrpc.usefulinc.com/doc/reserved.html
http://scripts.incutio.com/xmlrpc/introspection.html

django-modern-rpc, Release 1.0.3

system.listMethods

Return a list of all methods available.

system.methodSignature

Return the signature of a specific method

system.methodHelp

Return the documentation for a specific method.

system.multicall

Like 3 others, this system method is not part of the standard. But its behavior has been well defined by Eric Kidd. It is
now implemented most of the XML-RPC servers and supported by number of clients (including Python’s ServerProxy).

This method can be used to make many RPC calls at once, by sending an array of RPC payload. The result is a list of
responses, with the result for each individual request, or a corresponding fault result.

It is available only to XML-RPC clients, since JSON-RPC protocol specify how to call multiple RPC methods at once
using batch request.

1.7 Authentication

django-modern-rpc provides a mechanism to check authentication before executing a given RPC method. It imple-
mented at request level and is always checked before executing procedure.

Changed in version 1.0.0: In previous releases, authentication failures caused the view to return a 403 status code
on response to standard (single) request, while batch requests / multicall always returned a 200 status with an error
message. For consistency with XML-RPC specs, an authentication failure now returns a 200 response with a proper
error (`error: -32603, message: Authentication failed when calling "<method_name>"`).

1.7.1 HTTP Basic Auth

django-modern-rpc comes with a builtin support for HTTP Basic Authentication. It provides a set of decorators to
directly extract user information from request and test this user against Django authentication system.

from modernrpc.auth.basic import (
http_basic_auth_login_required,
http_basic_auth_superuser_required,
http_basic_auth_permissions_required,
http_basic_auth_any_of_permissions_required,
http_basic_auth_group_member_required,
http_basic_auth_all_groups_member_required

)
from modernrpc.core import rpc_method

@rpc_method
(continues on next page)

1.7. Authentication 17

https://mirrors.talideon.com/articles/multicall.html
https://github.com/emk
https://docs.python.org/3/library/xmlrpc.client.html#multicall-objects
https://en.wikipedia.org/wiki/Basic_access_authentication

django-modern-rpc, Release 1.0.3

(continued from previous page)

@http_basic_auth_login_required
def logged_user_required(x):

"""Access allowed only to logged users"""
return x

@rpc_method
@http_basic_auth_superuser_required
def logged_superuser_required(x):

"""Access allowed only to superusers"""
return x

@rpc_method
@http_basic_auth_permissions_required(permissions='auth.delete_user')
def delete_user_perm_required(x):

"""Access allowed only to users with specified permission"""
return x

@rpc_method
@http_basic_auth_any_of_permissions_required(permissions=['auth.add_user', 'auth.change_
→˓user'])
def any_permission_required(x):

"""Access allowed only to users with at least 1 of the specified permissions"""
return x

@rpc_method
@http_basic_auth_permissions_required(permissions=['auth.add_user', 'auth.change_user'])
def all_permissions_required(x):

"""Access allowed only to users with all the specified permissions"""
return x

@rpc_method
@http_basic_auth_group_member_required(groups='A')
def in_group_A_required(x):

"""Access allowed only to users contained in specified group"""
return x

@rpc_method
@http_basic_auth_group_member_required(groups=['A', 'B'])
def in_group_A_or_B_required(x):

"""Access allowed only to users contained in at least 1 of the specified group"""
return x

@rpc_method
@http_basic_auth_all_groups_member_required(groups=['A', 'B'])
def in_groups_A_and_B_required_alt(x):

"""Access allowed only to users contained in all the specified group"""
return x

18 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

1.7.2 Custom authentication system

To provide authentication features, django-modern-rpc introduce concept of “predicate”. This example will show you
how to build a custom authentication system to restrict RPC method execution to clients that present a User-Agent
different from a known list of bots.

def forbid_bots_access(request):
"""Return True when request has a User-Agent different from provided list"""
if "User-Agent" not in request.headers:

No User-Agent provided, the request must be rejected
return False

forbidden_bots = [
'Googlebot', # Google
'Bingbot', # Microsoft
'Slurp', # Yahoo
'DuckDuckBot', # DuckDuckGo
'Baiduspider', # Baidu
'YandexBot', # Yandex
'facebot', # Facebook

]

req_user_agent = request.headers["User-Agent"].lower()
for bot_user_agent in [ua.lower() for ua in forbidden_bots]:

If we detect the caller is one of the bots listed above...
if bot_user_agent in req_user_agent:

... forbid access
return False

In all other cases, allow access
return True

Note: A predicate always takes a request as argument and returns a boolean value

It is associated with RPC method using @set_authentication_predicate decorator.

from modernrpc.core import rpc_method
from modernrpc.auth import set_authentication_predicate
from myproject.myapp.auth import forbid_bots_access

@rpc_method
@set_authentication_predicate(forbid_bots_access)
def my_rpc_method(a, b):

return a + b

Now, the RPC method becomes unavailable to callers if User-Agent is not provided or if it has an invalid value.

In addition, you can provide arguments to your predicate using params:

@rpc_method
@set_authentication_predicate(my_predicate_with_params, params=('param_1', 42))
def my_rpc_method(a, b):

return a + b

1.7. Authentication 19

django-modern-rpc, Release 1.0.3

It is possible to declare multiple predicates for a single method. In such case, all predicates must return True to allow
access to the method.

@rpc_method
@set_authentication_predicate(forbid_bots_access)
@set_authentication_predicate(my_predicate_with_params, params=('param_1', 42))
def my_rpc_method(a, b):

return a + b

1.8 Procedures documentation

Django-modern-rpc can optionally process the docstring attached to your RPC methods and display it in a web page.
This article will explain how generated documentation can bu used and customized.

1.8.1 Enable documentation

RPCEntryPoint class can be configured to provide HTML documentation of your RPC methods. To enable the feature,
simply set enable_doc = True in your view instance

urlpatterns = [

Configure the RPCEntryPoint directly by passing some arguments to as_view() method
path('rpc/', RPCEntryPoint.as_view(enable_doc=True)),

]

If you prefer provide documentation on a different URL than the one used to handle RPC requests, you just need to
specify two different URLConf.

urlpatterns = [

By default, RPCEntryPoint does NOT provide documentation but handle RPC requests
path('rpc/', RPCEntryPoint.as_view()),

And you can configure it to display doc without handling RPC requests.
path('rpc-doc/', RPCEntryPoint.as_view(enable_doc=True, enable_rpc=False)),

]

1.8.2 Customize rendering

You can customize the documentation page by setting your own template. RPCEntryPoint inherits django.views.
generic.base.TemplateView, so you have to set view’s template_name attribute:

urlpatterns = [
RPCEntryPoint can be configured with arguments passed to as_view()
path(
'rpc/',
RPCEntryPoint.as_view(
enable_doc=True,
template_name='my_app/my_custom_doc_template.html'

)
(continues on next page)

20 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

(continued from previous page)

),
]

In the template, you will get a list of modernrpc.core.RPCMethod instance (one per registered RPC method). Each
instance of this class has some methods and properties to retrieve documentation.

By default, documentation will be rendered using HTML5 vanilla tags with default classes and ids.

Changed in version 1.0.0: In previous releases, the default template was based on Bootstrap 4 with collapse compo-
nents and accordion widgets. To use this BS4 template, simply set `template_name='modernrpc/bootstrap4/
doc_index.html'` when instantiating the view.

1.8.3 Write documentation

The documentation is generated directly from RPC methods docstring

@rpc_method(name="util.printContentType")
def content_type_printer(**kwargs):

"""
Inspect request to extract the Content-Type header if present.
This method demonstrates how a RPC method can access the request object.
:param kwargs: Dict with current request, protocol and entry_point information.
:return: The Content-Type string for incoming request
"""
The other available variables are:
protocol = kwargs.get(MODERNRPC_PROTOCOL_PARAM_NAME)
entry_point = kwargs.get(MODERNRPC_ENTRY_POINT_PARAM_NAME)

Get the current request
request = kwargs.get(REQUEST_KEY)
Return the content-type of the current request
return request.META.get('Content-Type', '')

If you want to use Markdown or reStructuredText syntax in your RPC method documentation, you have to install the
corresponding package in you environment.

pip install Markdown

or

pip install docutils

Then, set settings.MODERNRPC_DOC_FORMAT to indicate which parser must be used to process your docstrings

In settings.py
MODERNRPC_DOC_FORMAT = 'markdown'

or

In settings.py
MODERNRPC_DOC_FORMAT = 'rst'

New in version 1.0.0: Typehints are now supported to generate arguments and return type in documentation

1.8. Procedures documentation 21

django-modern-rpc, Release 1.0.3

1.9 Security concerns

Since django-modern-rpc uses builtin xmlrpc.client internally, it is vulnerable to various security issues related to
XML payloads parsing. To protect you project against these attacks, you can install the package defusedxml in your
environment.

Alternatively, you can install django-modern-rpc with an extra to setup all at once :

pip install django-modern-rpc[defusedxml]

Once defusedxml can be imported, various method are automatically patched against multiple attacks vectors.

For more information, check the `defusedxml project's`_ README.

1.10 Changelog

1.10.1 Next release

Improvements

Fixes

1.10.2 v1.0.3

Release date: 2024-02-29

Improvements

• When package defusedxml is installed in the same environment, builtin xmlrpc.client module is patched to
reduce the risk of various XML payload based attacks on the server

Fixes

• Fix dependency to packaging introduced in previous release.

Misc

• Added support for Django 5.0 (Thanks to @washeck)

• Reduced the verbosity of the package. Startup initialization message is now a DEBUG log instead of an INFO
one (Thanks to @washeck)

• Dropped use of Black and PyLint. Use Ruff to enforce all linting rules and code formatting

22 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

1.10.3 v1.0.2

Release date: 2023-11-27

Fixes

• When request is received with an invalid Content-Type (or missing one), the error response is now returned with
a “text/plain” Content-Type header.

Misc

• Dropped support of python 3.5 and 3.6

• Added support for python 3.12 and Django 4.2

1.10.4 v1.0.1

Release date: 2023-01-26

Fixes

• Fixed invalid argument used to initialized default handlers instances (#52). Thanks to @washeck

1.10.5 v1.0.0

Release date: 2023-01-03
After months of work, the 1.0 milestone is a major refactoring of the library. Many parts of the project have been
modernized to improve readability and robustness, and a few issues were fixed.

Improvements

• Type hinting is now supported in RPC methods. Auto-generated documentation will use it when it is defined.
Old-style “doctypes” are still supported.

• Dependency to six have been completely removed

Breaking Changes

• When an authentication error is raised, the returned status code is now 200 instead of 403 for consistency with
batch and system.multicall requests (#35)

• Django < 2.1 and Python < 3.5 support have been dropped.

1.10. Changelog 23

django-modern-rpc, Release 1.0.3

Other API changes

• A new modernrpc.core.Protocol enum has been introduced to enforce correct protocol value when
needed. (#29, #30). This new class replaces modernrpc.core.JSONRPC_PROTOCOL and modernrpc.core.
XMLRPC_PROTOCOL but aliases were created for backward compatibility.

• RPCUnknownMethod exception has been renamed to RPCMethodNotFound. An alias has been created for back-
ward compatibility

Fixes

• Initialization process updated: exceptions are now raised on startup for invalid RPC modules. In addition, Django
check system is used to notify common errors. This was requested multiple times (#2, #13, #34).

• JSON-RPC notification behavior has been fixed to respect standard. Requests without id are handled as notifi-
cations but requests with null id are considered invalid and will return an error

• Batch request behavior has been fixed when one or more results failed to be serialized

• Builtin system.methodSignature behavior have been updated to respect standard. It now returns a list of list
and unknown types are returned as “undef” (see http://xmlrpc-c.sourceforge.net/introspection.html)

Misc

• Added support for Python 3.9, 3.10 and 3.11

• Added support for Django 3.2, 4.0 and 4.1

• Documentation tree was completely reworked for clarity and simplicity. A new theme (Book) is now used to
improve readability. See https://django-modern-rpc.rtfd.io.

• Poetry is now used to configure project dependencies and build distributions. The new pyproject.toml file re-
places setup.py, setup.cfg, MANIFEST.in and requirements.txt to centralize all dependencies, external
tools settings (pytest, flake8, etc.) and packaging configuration

• Black is now used to automatically format code

• Mypy is now used to verify type hints consistency

• Tox configuration now includes pylama, mypy, pylint and black environments

• All tests have been rewritten to have a strong separation between unit and functional tests. Test classes where
created to group tests by similarities. Many fixtures have been added, with more parameterization, resulting in
about 350 tests executed covering more than 95% of the code.

1.10.6 v0.12.1

Release date: 2020-06-11

24 Chapter 1. Getting started

https://django-modern-rpc.rtfd.io

django-modern-rpc, Release 1.0.3

Fixes

• Fix ImportError with Django 3.1

1.10.7 v0.12.0

Release date: 2019-12-05

Misc

• Django 2.1, 2.2 and 3.0 are now officially supported. Thanks to @atodorov for 3.0 compatibility

• Added Python 3.7 and 3.8 support

• Dropped Python 3.3 support

Improvements

• To ensure compatibility with JSON-RPC 1.2, 2 more “Content-Type” values are supported by JSON-RPC Han-
dler: “application/json-rpc” and “application/jsonrequest” (#24). Thanks to @dansan

1.10.8 v0.11.1

Release date: 2018-05-13

Improvements

Last release introduced some undocumented breaking API changes regarding RPC registry management. Old API has
been restored for backward compatibility. The following global functions are now back in the API:

• modernrpc.core.register_rpc_method()

• modernrpc.core.get_all_method_names()

• modernrpc.core.get_all_methods()

• modernrpc.core.get_method()

• modernrpc.core.reset_registry()

In addition, some improvements have been applied to unit tests, to make sure test environment is the same after each test
function. In addition, some exclusion patterns have been added in .coveragerc file to increase coverage report accuracy.

1.10.9 v0.11.0

Release date: 2018-04-25

1.10. Changelog 25

https://www.jsonrpc.org/historical/json-rpc-over-http.html

django-modern-rpc, Release 1.0.3

Improvements

• Django 2.0 is now officially supported. Tox and Travis default config have been updated to integrate Django 2.0
in existing tests environments.

• Method’s documentation is generated only if needed and uses Django’s @cached_property decorator

• HTML documentation default template has been updated: Bootstrap 4.1.0 stable is now used, and the rendering
has been improved.

• Many units tests have been improved. Some tests with many calls to LiveServer have been split into shorter ones.

API Changes

• Class RPCRequest has been removed and replaced by method execute_procedure(name, args, kwargs)
in RPCHandler class. This method contains common logic used to retrieve an RPC method, execute authenti-
cation predicates to make sure it can be run, execute the concrete method and return the result.

• HTML documentation content is not marked as “safe” anymore, using django.utils.safestring.
mark_safe(). You have to use Django decorator safe in your template if you display this value.

Settings

• The kwargs dict passed to RPC methods can have customized keys (#18). Set the following values:

– settings.MODERNRPC_KWARGS_REQUEST_KEY

– settings.MODERNRPC_KWARGS_ENTRY_POINT_KEY

– settings.MODERNRPC_KWARGS_PROTOCOL_KEY

– settings.MODERNRPC_KWARGS_HANDLER_KEY

to override dict keys and prevent conflicts with your own methods arguments.

1.10.10 v0.10.0

Release date: 2017-12-06

Improvements

• Logging system / error management

– In case of error, current exception stacktrace is now passed to logger by default. This allows special handler
like django.utils.log.AdminEmailHandler or raven.handlers.logging.SentryHandler to use
it to report more useful information (#13)

– Error messages have been rewritten to be consistent across all modules and classes

– Decrease log verbosity: some INFO log messages now have DEBUG level (startup methods registration)

• Documentation has been updated

– Added a page to explain how to configure RPC methods documentation generation, and add a note to explic-
itly state that markdown or docutils package must be installed if settings.MODERNRPC_DOC_FORMAT
is set to non-empty value (#16)

– Added a page to list implemented system introspection methods

26 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

– Added a bibliography page, to list all references used to write the library

• Default template for generated RPC methods documentation now uses Bootstrap 4.0.0-beta.2 (previously 4.0.0-
alpha.5)

1.10.11 v0.9.0

Release date: 2017-10-03
This is a major release with many improvements, protocol support and bug fixes. This version introduces an API break,
please read carefully.

Improvements

• Class RPCException and its subclasses now accept an additional data argument (#10). This is used by JSON-
RPC handler to report additional information to user in case of error. This data is ignored by XML-RPC handler.

• JSON-RPC: Batch requests are now supported (#11)

• JSON-RPC: Named parameters are now supported (#12)

• JSON-RPC: Notification calls are now supported. Missing “id” in a payload is no longer considered as invalid,
but is correctly handled. No HTTP response is returned in such case, according to the standard.

• XML-RPC: exception raised when serializing data to XML are now caught as InternalError and a clear error
message

API Changes

• Both modernrpc.handlers.JSONRPC and modernrpc.handlers.XMLRPC constants were moved and
renamed. They become respectively modernrpc.core.JSONRPC_PROTOCOL and modernrpc.core.
XMLRPC_PROTOCOL

• RPCHandler class updated, as well as subclasses XMLRPCHandler and JSONRPCHandler. RPCHandler.
parse_request() is now RPCHandler.process_request(). The new method does not return a tu-
ple (method_name, params) anymore. Instead, it executes the underlying RPC method using new class
RPCRequest. If you customized your handlers, please make sure you updated your code (if needed).

Fixes

• Code has been improved to prepare future compatibility with Django 2.0

1.10.12 v0.8.1

Release date: 2017-10-02
important
This version is a security fix. Upgrade is highly recommended

1.10. Changelog 27

django-modern-rpc, Release 1.0.3

Security fix

• Authentication backend is correctly checked when executing method using system.multicall()

1.10.13 v0.8.0

Release date: 2017-07-12

Fixes

• Fixed invalid HTML tag rendered from RPC Method documentation. Single new lines are converted to space
since they are mostly used to limit docstrings line width. See pull request #7, thanks to @adamdonahue

• Signature of auth.set_authentication_predicate has been fixed. It can now be used as decorator (#8).
See the documentation for details. Thanks to @aplicacionamedida

1.10.14 v0.7.1

Release date: 2017-06-24

Fixes

• Removed useless settings variable introduced in last 0.7.0 release. Logging capabilities are now enabled by
simply configuring a logger for modernrpc.* modules, using Django variable LOGGING. The documentation
has been updated accordingly.

1.10.15 v0.7.0

Release date: 2017-06-24

Improvements

• Default logging behavior has changed. The library will not output any log anymore, unless
MODERNRPC_ENABLE_LOGGING is set to True. See docs for details

1.10.16 v0.6.0

Release date: 2017-05-13

28 Chapter 1. Getting started

https://django-modern-rpc.rtfd.io//en/latest/docs/authentication.html
https://django-modern-rpc.rtfd.io/en/latest/docs/error_handling.html
https://django-modern-rpc.rtfd.io/en/latest/docs/error_handling.html

django-modern-rpc, Release 1.0.3

Improvements

• Django cache system was previously used to store the list of available methods in the current project. This was
useless, and caused issues with some cache systems (#5). Use of cache system has been removed. The list of
RPC methods is computed when the application is started and kept in memory until it is stopped.

1.10.17 v0.5.2

Release date: 2017-04-18

Improvements

• HTTP Basic Authentication backend: User instance is now correctly stored in current request after successful
authentication (#4)

• Unit testing with Django 1.11 is now performed against release version (Beta and RC are not tested anymore)

• Various Documentation improvements

1.10.18 v0.5.1

Release date: 2017-03-25

Improvements

• When RPC methods are registered, if a module file contains errors, a python warning is produced. This ensures
the message will be displayed even if the logging system is not configured in a project (#2)

• Python 2 strings standardization. Allow to configure an automatic conversion of incoming strings, to ensure
they have the same type in RPC method, no matter what protocol was used to call it. Previously, due to different
behavior between JSON and XML deserializers, strings were received as strwhen method was called via XML-
RPC and as unicodewith JSON-RPC. This standardization process is disabled by default, and can be configured
for the whole project or for specific RPC methods.

• Tests are performed against Django 1.11rc1

• modernrpc.core.register_method() function was deprecated since version 0.4.0 and has been removed.

1.10.19 v0.5.0

Release date: 2017-02-18

Improvements

• Typo fixes

• JSON-RPC 2.0 standard explicitly allows requests without ‘params’ member. This doesn’t produce error any-
more.

• Setting variable MODERNRPC_XML_USE_BUILTIN_TYPES is now deprecated in favor of
MODERNRPC_XMLRPC_USE_BUILTIN_TYPES

1.10. Changelog 29

django-modern-rpc, Release 1.0.3

• Unit tests are now performed with python 3.6 and Django 1.11 alpha, in addition to supported environment
already tested. This is a first step to full support for these environments.

• HTTP “Basic Auth” support: it is now possible to define RPC methods available only to specific users. The
control can be done on various user attributes: group, permission, superuser status, etc. Authentication backend
can be extended to support any method based on incoming request.

1.10.20 v0.4.2

Release date: 2016-11-20

Improvements

• Various performance improvements

• Better use of logging system (python builtin) to report errors & exceptions from library and RPC methods

• Rewritten docstring parser. Markdown and reStructured formatters are still supported to generate HTML docu-
mentation for RPC methods. They now have unit tests to validate their behavior.

• @rpc_method decorator can be used with or without the parenthesis (and this feature is tested)

• System methods have been documented

1.10.21 v0.4.1

Release date: 2016-11-17

Improvements

• Method arguments documentation keep the same order as defined in docstring

• API change: MODERNRPC_ENTRY_POINTS_MODULES setting have been renamed to
MODERNRPC_METHODS_MODULES.

• A simple warning is displayed when MODERNRPC_METHODS_MODULES is not set, instead of a radical
ImproperlyConfigured exception.

• Some traces have been added to allow debugging in the module easily. It uses the builtin logging framework.

1.10.22 v0.4.0

Release date: 2016-11-17

30 Chapter 1. Getting started

django-modern-rpc, Release 1.0.3

API Changes

• New unified way to register methods. Documentation in progress

• XMl-RPC handler will now correctly serialize and unserialize None values by default. This behavior can be
configured using MODERNRPC_XMLRPC_ALLOW_NONE setting.

Fixes

• When django use a persistent cache (Redis, memcached, etc.), ensure the registry is up-to-date with current
sources at startup

1.10.23 v0.3.2

Release date: 2016-10-26

Fixes

• Include missing templates in pypi distribution packages

1.10.24 v0.3.1

Release date: 2016-10-26

Improvements

• HTML documentation automatically generated for an entry point

• system.multicall is now supported, only in XML-RPC

• Many tests added

1.10.25 v0.3.0

Release date: 2016-10-18

API Changes

• Settings variables have been renamed to limit conflicts with other libraries. In the future, all settings will have
the same prefix.

– JSONRPC_DEFAULT_DECODER becomes MODERNRPC_JSON_DECODER

– JSONRPC_DEFAULT_ENCODER becomes MODERNRPC_JSON_ENCODER

See https://github.com/alorence/django-modern-rpc/blob/master/modernrpc/conf/default_settings.py for more
details

• Many other settings added, to make the library more configurable. See https://django-modern-rpc.rtfd.io/en/
latest/basic_usage/settings.html

1.10. Changelog 31

https://github.com/alorence/django-modern-rpc/blob/master/modernrpc/conf/default_settings.py
https://django-modern-rpc.rtfd.io/en/latest/basic_usage/settings.html
https://django-modern-rpc.rtfd.io/en/latest/basic_usage/settings.html

django-modern-rpc, Release 1.0.3

Improvements

• RPC methods can now declare the special **kwargs parameter. The dict will contain information about current
context (request, entry point, protocol, etc.)

• About 12 tests added to increase coverage

• Many documentation improvements

• system.methodHelp is now supported

1.10.26 v0.2.3

Release date: 2016-10-13

Fixes

• Packages modernrpc.tests and testsite were excluded from Pypi distribution (both binary and source).
This action was forgotten in the last release

1.10.27 v0.2.2

Release date: 2016-10-13

Fixes

• Packages modernrpc.tests and testsite were excluded from Pypi distribution (both binary and source)

1.10.28 v0.2.1

Release date: 2016-10-12

Improvements

• Project is now configured to report tests coverage. See https://coveralls.io/github/alorence/django-modern-rpc

• Some documentation have been added, to cover more features of the library. See https://django-modern-rpc.rtfd.
io/

• Many unit tests added to increase coverage

• RPCEntryPoint class can now be configured to handle only requests from a specific protocol

32 Chapter 1. Getting started

https://coveralls.io/github/alorence/django-modern-rpc
https://django-modern-rpc.rtfd.io/
https://django-modern-rpc.rtfd.io/

django-modern-rpc, Release 1.0.3

1.10.29 v0.2.0

Release date: 2016-10-05

Improvements

• Added very basic documentation: https://django-modern-rpc.rtfd.io/

• system.listMethods is now supported

• system.methodSignature is now supported

• Error reporting has been improved. Correct error codes and messages are returned on usual fail cause. See
module modernrpc.exceptions for more information.

• Many unit tests have been added to increase test coverage of the library

1.10.30 v0.1.0

Release date: 2016-10-02
This is the very first version of the library. Only a subset of planned features were implemented

Current features

• Work with Python 2.7, 3.3, 3.4 (Django 1.8 only) and 3.5

• Work with Django 1.8, 1.9 and 1.10

• JSON-RPC and XML-RPC simple requests support

• Multiple entry-points with defined list of methods and supported protocols

Not implemented yet

• No authentication support

• Unit tests doesn’t cover all the code

• RPC system methods utility (listMethods, methodSignature, etc.) are not yet implemented

• There is no way to provide documentation in HTML form

• The library itself doesn’t have any documentation (apart from the README.md)

1.11 Get involved

You can contribute to the project in multiple ways. Developer or not, all contributions are welcome.

1.11. Get involved 33

https://django-modern-rpc.rtfd.io/

django-modern-rpc, Release 1.0.3

1.11.1 Report issues, suggest enhancements

If you find a bug, want to ask question about configuration or suggest an improvement to the project, feel free to use the
issue tracker. You will need a GitHub account. Please be kind and respectful, this project is maintained on free time
by a single developer.

1.11.2 Submit a pull request

If you improved something or fixed a bug by yourself in a fork, you can submit a pull request. We will be happy to review
it before doing a merge. The next page, Setup environment will explain how to configure a development environment
in order to work on project source code.

1.12 Setup environment

Since 1.0, django-modern-rpc uses poetry as main tool to manage project dependencies, environments and packaging.
It must be installed globally on your system.

1.12.1 Install poetry

There is multiple way to install poetry. Refer to official documentation and choose your preferred method.

If you already use pipx, installation is very quick and clean.

$ pipx install poetry

Alternatively, you can use the official get-poetry.py install script.

$ curl -sSL https://install.python-poetry.org | python3 -

1.12.2 Install dependencies

Dependencies are configured in pyproject.toml file. In addition, poetry.lock file contains resolved dependency
tree. To install basic development environment, simply run

$ poetry install

Note: This command will automatically create a new environment if needed. You do not need to create it manually.

This will install everything needed to develop and test the library. In addition, optional group may be specified to enable
other toolset (See below)

34 Chapter 1. Getting started

https://github.com/alorence/django-modern-rpc/issues
https://github.com/alorence/django-modern-rpc/issues
https://github.com/alorence/django-modern-rpc/pulls
https://python-poetry.org/docs/#installation

django-modern-rpc, Release 1.0.3

1.12.3 Run tests

The project have a lot of unit and functional tests to avoid regressions across new releases. They are automatically run
on CI/CD platform (currently GitHub Actions) on each push, pull request and before every release.

But you should run tests on you development machine before submitting a new pull request.

System interpreter

To run test with your current python interpreter, simply run pytest inside poetry environment.

poetry run pytest

Python / Django versions matrix

If you have multiple python versions on your system, or if you have pyenv installed, you can setup tox and perform tests
against multiple python / django versions

$ poetry install --with tox
$ pyenv local system 3.11 3.10 3.9 3.8
$ poetry run tox

To speedup tests run, you can use -p option to parallelize environment specific tests

$ poetry run tox -p 4

Caution: Don’t run too much parallel threads or you may slow down or completely freeze your machine !

1.12.4 Build docs

If you need to update documentation, first install required dependencies

poetry install --with docs

Then, cd into docs directory and use Makefile pre-defined commands.

To build docs with required options:

Listing 15: from docs/ directory

poetry run make html

The built files are stored inside dist/docs folder.

To simplify the writing process, you can run autobuild which automatically watch changes on files, rebuild docs and
enable LiveServer on compatible browsers

Listing 16: from docs/ directory

poetry run make serve

1.12. Setup environment 35

https://github.com/alorence/django-modern-rpc/actions

django-modern-rpc, Release 1.0.3

1.12.5 Code quality

The project uses linting and formatting tools to unify source code definition and remove most of the typo and typing
issues. You can run any tool directly inside poetry environment, or run them directly using tox (to unify command lines
options used).

poetry install --with code-analysis
poetry run tox -e ruff,mypy

Important: These tools are run on GitHub Actions and will break the build on errors. Don’t forget to run the before
submitting a pull request.

36 Chapter 1. Getting started

https://github.com/alorence/django-modern-rpc/actions

INDEX

G
get_builtin_date() (in module modernrpc.helpers),

15
get_context_data() (modern-

rpc.views.RPCEntryPoint method), 9

H
handler_classes (modernrpc.views.RPCEntryPoint

attribute), 9

P
post() (modernrpc.views.RPCEntryPoint method), 9

R
RPCEntryPoint (class in modernrpc.views), 9

37

	Getting started
	Quickstart
	Installation
	Declare a procedure
	Locate procedures modules
	Create an entry point
	Test the server

	Procedures registration
	Introduction
	Customize registration
	Procedure name
	Protocol availability
	Entry point

	Access internal information

	Entrypoints configuration
	Usage
	Advanced configuration
	Restrict supported protocol
	Declare multiple entry points
	HTML documentation

	Reference

	Error handling
	Introduction
	Builtin exceptions
	Custom exceptions
	Log errors

	Settings
	Basic settings
	MODERNRPC_METHODS_MODULES
	MODERNRPC_LOG_EXCEPTIONS
	MODERNRPC_DOC_FORMAT
	MODERNRPC_HANDLERS
	MODERNRPC_DEFAULT_ENTRYPOINT_NAME

	Protocol specific
	MODERNRPC_JSON_DECODER
	MODERNRPC_JSON_ENCODER
	MODERNRPC_XMLRPC_USE_BUILTIN_TYPES
	MODERNRPC_XMLRPC_ALLOW_NONE
	MODERNRPC_XMLRPC_DEFAULT_ENCODING
	MODERNRPC_XML_USE_BUILTIN_TYPES

	Implementation details
	XML-RPC
	System introspection methods
	Multicall
	Other useful links

	JSON-RPC
	Types support
	Logging
	System methods
	system.listMethods
	system.methodSignature
	system.methodHelp
	system.multicall

	Authentication
	HTTP Basic Auth
	Custom authentication system

	Procedures documentation
	Enable documentation
	Customize rendering
	Write documentation

	Security concerns
	Changelog
	Next release
	Improvements
	Fixes

	v1.0.3
	Improvements
	Fixes
	Misc

	v1.0.2
	Fixes
	Misc

	v1.0.1
	Fixes

	v1.0.0
	Improvements
	Breaking Changes
	Other API changes
	Fixes
	Misc

	v0.12.1
	Fixes

	v0.12.0
	Misc
	Improvements

	v0.11.1
	Improvements

	v0.11.0
	Improvements
	API Changes
	Settings

	v0.10.0
	Improvements

	v0.9.0
	Improvements
	API Changes
	Fixes

	v0.8.1
	Security fix

	v0.8.0
	Fixes

	v0.7.1
	Fixes

	v0.7.0
	Improvements

	v0.6.0
	Improvements

	v0.5.2
	Improvements

	v0.5.1
	Improvements

	v0.5.0
	Improvements

	v0.4.2
	Improvements

	v0.4.1
	Improvements

	v0.4.0
	API Changes
	Fixes

	v0.3.2
	Fixes

	v0.3.1
	Improvements

	v0.3.0
	API Changes
	Improvements

	v0.2.3
	Fixes

	v0.2.2
	Fixes

	v0.2.1
	Improvements

	v0.2.0
	Improvements

	v0.1.0
	Current features
	Not implemented yet

	Get involved
	Report issues, suggest enhancements
	Submit a pull request

	Setup environment
	Install poetry
	Install dependencies
	Run tests
	System interpreter
	Python / Django versions matrix

	Build docs
	Code quality

	Index

